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Photovoltaic power systems with novel refractive silicone solar concentrators are being developed for use in low
Earth orbit (LEO). Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation, these lenses
are coated with a multilayer metal oxide protective coating. The objective of this work was to evaluate the effects of
atomic oxygen and thermal exposures on multilayer coated silicone. Samples were exposed to high-fluence ground-

laboratory and Iow-fluence in-space atomic oxygen. Ground testing resulted in decreases in both total and specular
transmittance, while in-space exposure resulted in only small decreases in specular transmittance. A contamination
film, attributed to exposed silicone at coating crack sites, was found to cause transmittance decreases during ground
testing. Propagation of coating cracks was found to be the result of sample heating during exposure. The potential

for silicone exposure, with the resulting degradation of optical properties from silicone contamination, indicates
that this multilayer coated silicone is not durable for LEO space applications where thermal exposures will cause
coating crack development and propagation.

Introduction

INCE 1986, NASA Lewis Research Center has been develop-
ing the minidome Fresnel lens photovoltaic concentrator. This

novel, point-focus refractive concentrator space power system of-
fers extremely high power density, relatively low weight, radiation

hardness, and potential for array cost reduction compared to existing

systems.l-3 The minidome Fresnel-lens concentrator uses a unique

optical design (a domed shape with individually tailored Fresnel
facets on the inside surface) that is very efficient and shape error tol-

erant. Figure 1 is an illustration of a single square-edged minidome

Fresnel lens. The general concept of the point-focus minidome con-

centrator has also been applied to a linear-focus design. The linear

Fresnel-lens concentrator has the same advantages as the point-focus

design with the added advantage of requiring precise sun tracking

only within a single axis. 4 These advanced refractive concentrator

designs, along with the introduction of new high-efficiency pho-

tovoltaic devices, could have significant use in fnture power sys-

tems for a wide range of missions, including low earth orbit (LEO),
geosynchronous orbits, and high-radiation orbits._-4

Under the current advanced refractive concentrator program, the

concentrator lens is made using a flexible silicone. Because silicones

are known to react with atomic oxygen, 5 the predominant species

in the LEO environment, 6 and to darken with ultraviolet radiation

exposure, a multilayer metal oxide coating to protect against atomic

oxygen (AO) and ultraviolet (UV) radiation is deposited onto the

silicone exterior. This coated silicone configuration is being consid-
ered as an alternative to earlier ones in which the lens is covered

with ceria-doped microglass.J-3

The efficiency of a refractive photovoltaic concentrator system

is directly related to the ability of the lens to focus incident ra-
diation onto the active area of the solar cell. Therefore, the con-
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centrator lens must maintain a high solar specular transmittance.

The purpose of this investigation was to evaluate the LEO dura-

bility of protected silicone for refractive concentrator systems. The

primary concerns are differences in the coefficient of thermal ex-

pansion (CTE) between the silicone substrate and the metal oxide

protective coating, atomic-oxygen interaction with exposed silicone

at coating defect sites with potential silicone contamination, and the

overall protection afforded by the multilayer coating. This evalua-
tion was conducted with both ground-laboratory and in-space ex-

posures.

Materials and Experimental Procedures
Materials

The materials evaluated were flat DC 93-500 silicone, coated with

a proprietary I l-layer (SiO2/AI203/Ta2Os) thin-film AO- and UV-
resistant coating, and uncoated DC 93-500 silicone. The 1 l-layer
coating was deposited by plasma-enhanced sputter deposition. Flat
material was evaluated instead of refractive lenses, so that optical

properties could be measured.

Characterization of Optical Properties
Total, diffuse, and specular transmittances were obtained using a

Perkin-Elmer L-9 spectrophotometer equipped with a 60-mm inte-

grating sphere. Solar integrated values were obtained by measuring

the spectral transmittance over the wavelengths of 250-2500 nm and
convoluting the data into the air-mass zero-solar-intensity curve over

this range. The spectral transmittance uncertainty is -I-2%.

Surface and Mass Characterization

Changes in surface morphology as a function ofAO fluence were
observed using optical microscopy, scanning electron microscopy

(SEM), and atomic force microscopy (AFM). The optical micro-

scope used was an Olympus SZH stereo microscope, and micro-

graphs were obtained at magnifications between 50 attd 95 times.

A Cambridge 200 scanning electron microscope was used for high-

magnification imaging (up to 13,000 times). Samples were coated

with conductive Au films prior to SEM examination. AFM analysis

was performed using a Park Scientific AutoProbe. X-ray photoelec-

tron spectroscopy (XPS) analysis was conducted on pristine and
ground-laboratory AO-exposed uncoated DC 93-500. Both XPS sur-

face analysis and XPS depth profiling were conducted. Dehydrated
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Fig. 1 Minidome Fresnel lens photovoltaic concentrator: before and

after severe bending and before and after flight.

mass measurements were obtained using a Sartorius balance, with

an uncertainty of ±50/xg.

Ground-Laboratory Atomic Oxygen
A Structure Probe Inc. plasma asher was used to produce an

AO plasma environment. In addition to AO, the plasma contains a
strong 130-nm line of UV radiation] Although the plasma asher
does not provide identical AO exposure conditions to those in
the LEO environment (because of differences in energy, flux, ar-
rival direction, species, etc.), ashers are generally accepted as
ground-laboratory systems for atomic-oxygen durability evaluation.
A plasma asher provides an inexpensive and timely way to conduct
ground-laboratory AO exposure compared to other sources of AO,
such as AO beam facilities, which are expensive, are not always
accessible, and generally provide a low AO flux. Effective fluence

exposures were based on the average of many flux measurements
obtained by ashing Kapton witness coupons in the asher prior to
exposure of silicones, and calculating the flux from the mass loss of
the Kapton and the known erosion yield of Kapton in LEO. s This has
been shown to be an acceptable method of estimating the expected

flux of a given asher exposure.
One drawback to using this method is that the rate of AO reac-

tion in the asher is dependent on the temperature of the sample.

The higher the temperature, the faster the reaction rate. Because
this method of estimating fluences does not take into account the

difference in temperature between the Kapton witness coupons and
the actual samples, the effective fluences stated in this paper should
be taken as first-order approximations. Samples were exposed to

estimated effective fluences of up to 2.6 x l0 -q atoms/era 2 based on
a flux of 3 × 10 _5atoms/era 2. s.

One large and six small multilayer metal-oxide-coated DC 93-500
samples were exposed to ground-laboratory AO. The large sample

(sample G7) was used for optical property measurements and was
protected on the uncoated side with AI foil so that only degradation
to Ihe coated surface would occur and be analyzed. Sample G7

was iteratively exposed to an effective AO fluence of 2.6 × 1021
atoms/era 2. Optical properties and dehydrated mass measurements
were obtained every 48 h. Five small samples (samples G2, G3, G4,

G5, and G6) were placed on glass slides in the asher with sample

G7. One small sample was removed every 48 h for destructive SEM
evaluation. A sixth small sample (sample G1 ) was kept unex- posed.

Each successive small sample for SEM evaluation had effective

fluences ranging from 0 to 2.6 × 102t atoms/era 2 in increments of
5.2 x 10 2o atoms/cm 2.

LEO Atomic Oxygen

One uncoated flight sample (FI) and one multilayer-coated DC
93-500 flight sample (F2) were exposed to the LEO environment

on the Environmental Oxygen Interaction with Materials (EOIM-

II[) Experiment. This experiment was exposed to LEO direct tara
atomic oxygen on STS-46 and received an approximate fluence of

2.3 x 10 -_° atoms/cm 2. Samples exposed in space received direct

ram atomic oxygen exposure to the front side only and were set

on polished stainless-steel disk holders during flight. Thermocou-

pies attached to the underside of an aluminized Kapton sample in

the same EOIM-III tray indicate that the tray temperature cycled

between the temperatures of _ 15 and 45C.

Results

Surface Characterization Prior to Atomic Oxygen Exposure

The pristine multilayer metal-oxide-coated DC 93-500 samples

contained coating cracks prior to any environmental exposure. These

cracks are attributed to the effects of sample heating during depo-
sition and are due to CTE mismatches between the coating and
the silicone as well as flexure during handling. Uncoated silicone

samples did not contain any surface cracks prior to AO exposure.

Ground-Laboratory Atomic Oxygen
The total transmittance of sample G7 was found to decrease from

0.834 to 0.796 (a decrease of 0.038) after a fluence of 1.0 × 1021

atoms/era 2, and then to remain stable around 0.793 until the final

fluence of 2.6 × 10 atoms/cm 2 (see Fig. 2). The specular transmit-

tance was found to decrease continuously with exposure from 0.749

to 0.606, a decrease of 0.143 (also shown in Fig. 2). Interference

fringe patterns were observed in the spectral data for both the total

and specular transmittance scans. Figure 3 shows an interference

pattern in the total transmittance spectra between 350 and 1200 nm,

which developed during AO exposure. A single maximum (_550

nm) and minimum (_460 nm) of the interference pattern were first
observed after a fluence of !.0 x 1021 atoms/cm 2. This interfer-

ence pattern continued to develop throughout exposure, extending
to larger wavelengths. The development of the interference pattern

is likely to be the result of the deposition of a thin film on the surface
of the sample. Silicone contamination of the Ka,pton witness coupon

was observed during initial exposure. Space-flight exposures such
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Fig. 3 Total transmittance spectra of sample G7 before and after AO
exposure.
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as on the Long Duration Exposure Facility (LDEF) have provided

evidence of spacecraft silicone contamination with exposure to
a vacuum environment containing AO and UV radiation. _'9 The

interference pattern therefore appears to be the result of cross-
contamination from silicone at the coating crack sites, which reacted

with AO (in a UV-containing vacuum environment), resulting in a

contamin,'mt layer on the metal oxide coating. One of the LEO dura-

bility concerns with coated silicone advanced refractive concentra-

tors is the possibi[fly ofcross-contami nation from the silicone. These
results indicate that some initial total and specular transmittance loss

are due to silicone contamination. Because sample G7 was ashed

along with samples G2-G6, the edges of samples G2_36 could
have been additional sources of silicone contamination products.

Therefore the transmittance decrease observed during ground-based

exposure may be somewhat accelerated.

Optical microscopy of sample G7 revealed the development of
additional coating cracks with continued AO exposure (see Fig. 4).

The extent of additional coating cracking with plasma asher expo-

sure was found to be very area specific. Figure 4 shows the area be-

fore and after AO plasma exposure, with the most severe additional

cracking observed. Note the nonuniform cracking density in Fig. 4c
after a fluence of 2.1 x 1()2J atoms/cm 2. Cracking associated with AO

a)

plasma exposure was found to continue to progress with increased

exposure time. This is likely to be due to the thermal cycling, that
was induced during the iterative ashing exposure. Refractive con-

centrators in space would also experience thermal cycling. The

development of coating cracks will result in decreased specular
transmittance.

Additional experiments were conducted to determine if the addi-

tional cracking of the multilayer coating during ground-laboratory

exposure was due to AO interactions or due to heating, which can

occur during plasma ashing (particularly with metals). Using ad-

hesively attached temperature indicators, it was found that coated

silicone samples were exposed to temperatures above 116 C in the

plasma environment when they were completely protected with AI

foil, and to approximately 49_C when the samples were not in con-

tact with metal (i.e.. wrapped in polymer material). Both tempera-

tures were found to cause equivalent amounts of additional cracking

of the protective coating. The cracking observed is attributed to the
differences in coefficient of thermal expansion between the silicone
and the metal oxide thin films (_ 10 -4 and _ 10-6C - ), respectively).

Figure 5 shows additional cracking of a coated silicone sample (G8)

after being totally encased in Kapton during plasma ashing. Encas-

ing the sample in Kapton resulted in sample heating, with no AO

exposure. This sample was exposed for 42 h (equivalent to a flu-
ence of 4.5 x I0 -_°atoms/cm2). When a sample was encased in a

Kapton/Al envelope, placed on a small water-cooled holder in a
heated asher, and maintained at 18'C for 48 h, the amount of addi-

tional cracking was significantly decreased, with the few additional

cracks being attributed to handling.

It was originally estimated that during LEO operation, the
minidome Fresnel lenses would be exposed to temperatures up to

,_,40.5°C. A coated sample (sample G9), placed in a regular furnace

maintained at -_-40.5_C, was found to show an increase in coating

cracks after a single 48-h exposure (see Fig. 6). This cracking in-

tensity is almost as severe as the cracking observed with sample G7
after a fluence of 5.2 x 102° atoms/cm-'. Most of the crack formation

observed during iterative AO asher exposures is thus attributed to

heating rather than AO interaction, and operating temperatures in

b) a)

c)

Fig. 4 Development of additional coating cracks on sample G7 with
AO plasma exposure: a) pristine, b) AO F = 5.2 x lift () atoms/cm 2,
andc) AOF 2.1 × 102/atoms/cm2.

b)

Fig. 5 Additional coating cracking of a coated silicone sample (G8)
after being totally encased in Kapton during plasma ashing (_49°C):
a) prior to exposure and b) after exposure.
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a) a) Prior to bending

b)

Fig. 6 Additional cracking of a coated silicone sample (G9) after being

placed in a 40.5 ° furnace for 48 h: a) prior to exposure and b) after
exposure.

space as low as 40°C will cause significant cracking of the protective

coating.
Tests were performed to evaluate the effect of additional crack-

ing on the optical properties. An unexposed coated sample (sample

B 1) was characterized for transmittance, and optical micrographs

were taken. This sample was bent in half, then rolled along the bend

line several times. Optical microscopy revealed extreme additional

cracking of the coating after bending and rolling, as can be seen in

Fig. 7. The postbend optical measurements revealed decreases in

tot_,l and specular transmittance by only 0.005 and 0.023, respec-

tively. ThereR)re, any decreases in total and specular transmittance in
excess of these values should not be attributed to protective-coating

cracking. Transmittance decreases that are not associated with addi-

tional cracking are attributed to film growth on the coated surface, as

indicated by the presence of the interference pattern in the _,peclral

data, and are likely due to cross-contamination from the exposed

silicone at fresh crack sites (and the unprotected sides of samples
G2-G6).

In addition to the changes in transmittance of sample G7, there

was a gain in mass of 0.46% with AO exposure (see Fig. 8). Scan-

ning electron microscopy of samples G2--G6 showed the apparent
formation of a smooth glassy layer on the exposed silicone in coat-

ing crack sites with AO exposure. The mass-gain and microscopy
analysis provided evidence suggesting the formation of an SiO_

layer on the exposed silicone areas. To confirm this silicone-to-SiO,

conversion process, XPS analysis was performed on four uncoated

DC 93-500 samples. Two of these samples were pristine, and two

were exposed to AO in a plasma asher with effective fluences of
6.11 × 10 l'; and 4.12 x 102° aloms/cm 2. The oxygen concentration

on Ihe surface of these samples showed a marked increase from _3 I

to _59 atomic percenl (A%), after an AO fluence of 4.12 x 102°

atoms/cm 2, while the percentage of silicon remained constant. The

majorily of oxygen concentration increase occurred after an AO flu-
ence of 6. I 1 x 10 L'_aloms/cm 2 (_57 A%), indicating that the rate

of oxygen increase slowed with exposure lime (see Fig. 9). Further

analysis of these samples revealed that the percentage of SiO, on the

surface of the samples increased from _26% to _77 ,c/_after a flu-
ence of 4. t 2 × 10 -'_atoms/cm 2. The utajorily of the SiO, conversion

0.2 mm

b) After bending

Fig. 7 Effect of severe bending (sample BI) on additional coating
cracks.
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Fig, 8 Gain in mass of sample G7 with AO plasma exposure.

occurred within a fluence of 6.11 x 10 _9 atoms/cm 2 (_72%). The

decrease in the rate of this conversion process with longer fluences

is attributed to less surface area of the silicone being exposed to the

AO as the silicate layer forms. Depth profiling showed that the SiO,

layer increased in depth as the AO effective fluence increased. At

6.11 × 10 _9 aloms/cm 2 the depth of the S iO, layer was measured to
be _1000 A, and at 4.12 x 1020 atoms/cm 2 it was measured to be

greater than 2000 A. The continued conversion of silicone to SiO,
after an initial surface SiO, layer has formed, is speculated to be

due to the ability of AO to diffuse through the SiO, layer.
When the surface of silicone converts to SiO, with AO exposure,

it typically loses organic side groups such as methyl groups (note the

loss of carbon in Fig. 9), shrinks, and causes mud-tile-like cracks.
SEM evaluation of samples G2-G6 provided images where sili-

cone in the coating cracks had converted to SiO_, cracked, formed
SiO, in that crack, anti cracked again. This type of SiO, conver-

sion cracking propagation is shown in Fig. 10. Figure 10a shows a

freshly opened crack with a stretched appearance (vertical) and an
older crack lhat has a smoothed-out, glassy appearance (horizontal).

Figure lob shows cracking of the converted SiO, layer inside a coat-
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Fig. 9 Surface atomic concentrations of O, C, and Si for uncoated DC
93-500 silicone as a function of An fluence.

Fig. 11 Isolated area of partially delaminated bulged coating islands.

a)

b)

Fig. 10 SEM micrographs showing the development of coating cracks
after an An fluence of 2.6 x 10zl atomslcm2: a) a freshly opened crack
(stretched appearance), and an older SiOx converted crack (smooth,
glassy appearance); and b) cracking of sin/ converted film inside a
protective coating crack.

ing crack. "'Bulging" of the coated areas between cracks was also

observed with SEM. Typically this bulging was found to increase
with increased AO exposure. This effect is observed as extra shad-

owing in the higher-fluence optical micrographs, such as the one in
Fig. 4c. In some isolated areas the bulged coating appears to have
partially delaminated from the silicone substrate, so that the edges
are free and lifted up, as can be seen in Fig. 11. Only a few coating
islands were actually found to have flaked off. The scattering of

incident light by these bulges could be a possible source of specular
transmittance loss. SEM evaluation also provided evidence that the

multilayer coating remained protective and did not appear eroded

by AO in the areas where it was not cracked.

LEO Atomic Oxygen
Sample F2, the coated DC 93-500 sample, exposed to directed ram

space AO, experienced essentially no change in the integrated total
transmittance and a 0.031 decrease in the integrated specular trans-

b)

Fig. 12 Coated DC 93-500 silicone exposed to LEO on STS46: a) before
flight and b) after Ilight (F ----2.3 x 102° atoms/cmZ).

mittance. This combination is consistent with the changes observed
in the bend-test sample. However, optical postflight macrographs

of sample F2 show only a slight amount of addilional cracking (see

Fig. 12), not enough to account for the specular transmittance change

according to results from the bend-test sample (the coating defect

at the center of the macrograph was purposely put there prior to

flight). Atomic-force-microscope topography proliles have shown

similar bulging of coated silicone sample F2 to that observed with the

ground-laboratory samples (see Fig. 13). Scattering of light by these
bulges may account fl_r additional specular transmittance losses in

excess of those due to cracking. The cracking is probably due to heat-

ing and thermal cycling of the sample while in orbit. As previously

mentioned, the tray in which this sample was placed cycled between

temperatures of _ 15 and 45 C. These temperatures have been shown

to be sufficient to cause cracking of the protective coating.

Postllight optical and atomic-force microscopy of the uncoated

silicone sample FI showed a cracked surface layer. This coating is

the result of conversion of silicone to SiO, with AO exposure (see

Fig. 14). Small changes were noted in both the total and specular

transmittance spectra of sample F2. These changes are not consis-
tent with the changes Ihat occurred in total or specular transmit-

tance spectra of the bend-test sample. The bend-test sample shows
virtually no change in total transmittance spectra before and after
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Fig. 13 Atomic-fnree-micrnscnpc topographic image of sample F2 af-

ter AO exposure on STS-46.
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Fig. 15 Comparison of total transmittance spectral changes of coated

DC 93-500 exposed to severe bending and to LEO AO.

h)

Fig. 14 Uncoated DC 93-500 exposed to I,EO on STS-46: a) before

tlight (no cracks) and h) after [light (SiO_ comersion cracks).

bending. The It)tal transmitlance speCtllUnl of sample t:2, however,

shows a slight decrease between approxmmtely 375 and 500 rim,

anti a slight increase between approximately 625 and 2125 nm (see

Fig. 15). The specular transmittance spectra of tile bend-test sam-

ple showed a fairly unilorm drop across the range of 250-2125

rim. In contrast, the specnlar lransmiltance speclra of sample F2

showed a hlrger decrease in the lower wavelengths of this range

(_350-700 nnl) and a smaller decrease in the higher wavelengths

(_1300-2125 ran). These spectral differences suggest that there is

an additional nmchanism affecting the optical properties of the AO-

exposed samples besides the additional cracking. Because these

changes do appear to occur in the spectra of sample G7 at the lowest

fluence interval (F = 5.2 x 10 -_" atoms/cm2), it is possible that a

contaminant trim had started to develop on the flight sample. The

lransniitt;mce data for sample F2 did not show an interference pat-

tern, but the interference pattern ,a,;is also not present in the spectra

of sam pie (;7 I.lr]lfi/,:i fitience of l.f) × l(] -_j alOlllslclYi 7. The EOI M-Ill

fluence, 2.3 x I ():" atoms/cnl:, wtiuild be equivalenl to approxinlalely

21 h of ground-laboralory expt)sule.

Discussion

Modilied techniques hax, e beet] iklund to signilicantly decrease

the number of metal oxide coaling cracks f_rmed during coating

deposition. This sttid_ pro'_Mes evidence that coating cracks will

propagate at temperalures ;is low ;is 40"C Silicone contamination

from the exposed silicone substrate at coaling crack sites poses a

danger to the Fresnel lens and to surrounding spacecraft systems

that depend on its optical properties. 1f means are not developed to

prevent the formation of these cracks, then multihtyer coated silicone

does not appear to be promising for LEO applications with higher

operating temperatures. However, more recent studies have shown

that the operating temperature range of the minidome Fresnel lenses

in LEO is more likely to be between -29 C and 10C and is very

dependent on the concentrator array design. In LEO application, in

which the operating temperatures are between -29'C and 10C,

the mllliilayer coating may be acceptable if the pristine lenses have

a minimal number of cracks. Low-temperature thermal exposures

and thermal cycling have noi been performed to evaluate the effects

of these low temperatures on the integrity of the coating. Furlher

testing should be done to study the effects of these conditions on

the coated silicone lens material. Also, testing should be done to

evaluate the effects that stresses place on the coating due to thermal

gradients in the refractive concentrators as a potential source of

coating cracks.

The changes observed in flight sample F2 were minor because

of the relatively low AO fluence (2.3 x 102o atoms/cm-') of the

EOIM-III mission. This low fluence makes comparisons between

in-space and ground-based AO exposures difficult. Longer-term

space-flight exposures of refractive concentrator materials, and

ground-laboratory and in-,;pace exposure of actual refractive con-

centrators, are needed to verify the h)ng-lerm effects of AO, ul-

traviolet radiation, and thermal cycling on the optical properties

of refi'active concentrators. Two passive minidome Fresnel lenses

were recently flown on STS-60, and .'in active experiment, the Pho-

tovoltaic Array Space Power Plus Diagnostics Flight Experiment, i

was also recently ltown on the Advanced Photovottaic and Elec-
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tronics Experiment (APEX). Both of these space-flight experiments

have multilayer metal-oxide-coated silicone concentrators.
Problems with excessive sample heating in an AO plasma asher

can make distinguishing between AO effects and heating effects on

samples that are sensitive to high temperature and/or temperature
variations difficult. In order 1o accurately study the effects of AO

on this type of coated silicone material, a method of cooling and

stabilizing the temperature of a sample within a plasma asher must
be devised in order to avoid cracking due to thermal stresses, which

affects the optical properties of the samples and may be mistaken
for or mask AO effects.

Conclusions

Multilayer metal-oxide-coated silicone refractive concentrator ma-

terial was exposed to ground-laboratory and in-space UV-containing
AO environments. Ground-laboratory exposures indicated a slight

drop in the total transmittance initially (0.834 to 0.796), but it be-
came stable at 0.793 with further exposure (decrease of 0.041 ). The

specular transmittance was found to decrease continuously with ex-

posure (0.749 to 0.606, a decrease of 0.143). Coating cracks present

on the pristine sample were found to continue to develop with envi-

ronmental exposure. Propagation of coating cracks was found to be
caused by heating to temperatures as low as 40_C. Bend-test results

show that decreases in total and specular transmittance up to 0,005

and 0.023, respectively, could be attributed to additional cracking.

Interference fringe patterns in the spectral data indicated the de-

velopment of a contamination layer during exposure. The source

of contamination is most likely the reaction of AO with exposed

silicone at coating crack sites (and other unprotected silicone) in

a UV-containing environment. Mass measurements, SEM analysis,

and XPS data support the formation of surface SiO, at exposed
silicone areas in coating crack sites. Evidence of silicone-to-SiO_

conversion in coating cracks, in addition to the knowledge of results

such as those on LDEF, indicates that a by-product of silicone con-

tamination is likely to have occurred, resulting in a contaminant film

that contributed to total and specular transmittance loss.
As a result of the CTE mismatches between the metal oxide pro-

tective coating and silicone substrate, and the demonstrated potential
for silicone contamination, alternative substrates with lower CTEs

and that do not produce contaminant by-products should be consid-

ered for LEO applications.
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